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The fluctuation-response relation is a fundamental relation that is applicable to systems near equilibrium. On
the other hand, when a system is driven far from equilibrium, this relation is violated in general because the
detailed-balance condition is not satisfied in nonequilibrium systems. Even in this case, it has been found that
for a class of Langevin equations, there exists an equality between the extent of violation of the fluctuation-
response relation in the nonequilibrium steady state and the rate of energy dissipation from the system into the
environment �T. Harada and S.-i. Sasa, Phys. Rev. Lett. 95, 130602 �2005��. Since this equality involves only
experimentally measurable quantities, it serves as a proposition to determine experimentally whether the
system can be described by a Langevin equation. Furthermore, the contribution of each degree of freedom to
the rate of energy dissipation can be determined based on this equality. In this paper, we present a compre-
hensive description on this equality, and provide a detailed derivation for various types of models including
many-body systems, Brownian motor models, time-dependent systems, and systems with multiple heat
reservoirs.
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I. INTRODUCTION

In equilibrium statistical mechanics, the thermodynamic
properties of a system in contact with a heat bath can be
described in terms of the dynamical degrees of freedom x
instead of a complete set of variables of the system and heat
bath �x ,��. It is also widely accepted to describe a system in
terms of effective variables x along with an effective Hamil-
tonian H�x� in which the contribution of the remaining vari-
ables � are renormalized. By appropriately selecting effec-
tive variables x, we can study the universal features of a
system �1�.

Similarly, in order to describe a system under a nonequi-
librium condition, it may be reasonable to determine a closed
description in terms of a part of the degrees of freedom x
instead of considering the entire set of variables �x ,��. In
this case, since we should consider the dynamics of the se-
lected variables, such a reduction in the degrees of freedom
requires the following strong assumption: �A1� The typical
time scale �x of the selected variables x is considerably
larger than the time scale �� of the remaining variables �.
This assumption implies that there exists a time scale �t such
that ����t��x. When this condition is satisfied, the time
evolution of the variables x with a time interval of �t is
described as a Markovian stochastic process; in particular, a
Langevin equation is obtained in the limit �t /�x→0 �2,3�.
The contribution of the eliminated degrees of freedom � is in
part renormalized into an effective Hamiltonian, and is in
part decomposed into dissipation and noise terms of the
Langevin equation characterized by a friction coefficient �
and the noise intensity M, respectively.

Although condition �A1� is sufficient to describe the dy-
namical properties of the effective variables, it is insufficient
to account for the thermodynamic properties of the system of
x, particularly, the energetics. In other words, condition �A1�
alone does not guarantee that the eliminated degrees of free-
dom can be regarded as a heat bath for the system of x. To
clarify this fact, let us consider a simple example �4�. Con-
sider that a colloidal particle suspended in an aqueous solu-
tion of temperature T is subjected to a periodic potential and
constant driving force. With regard to the long-time behavior
of the particle, we can obtain an effective description ex-
pressed as a Langevin equation with effective friction coef-
ficient � and noise intensity M. However, in such a descrip-
tion, it is found that M ��T, thereby implying that the
second kind of the fluctuation-dissipation theorem cannot be
applied naively in contrast to the equilibrium case �the Bolt-
zmann constant is set to unity�. This is because the elimi-
nated variables, which include the short-time motion of the
particle itself, are also affected by the driving force. In such
a case, it becomes difficult to identify the boundary between
the system and the heat bath, and we cannot accurately de-
termine the amount of energy transferred between x and �.
In order to avoid this difficultly, we require another assump-
tion: �A2� The nonequilibrium condition imposed on the sys-
tem of x does not directly affect the eliminated degrees of
freedom �. Based on assumptions �A1� and �A2�, we can
consider that the eliminated variables are quickly equili-
brated at a temperature T when no energy is transferred be-
tween x and �. When the system of x exerts a force on the
eliminated degrees of freedom, the reaction to the system of
x can be characterized with the linear-response properties of
the eliminated variables, such as the friction coefficient �. In
particular, when the system dynamics are described by a
Langevin equation, assumption �A2� relates M to � and T
according to the second kind of the fluctuation-dissipation
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theorem: M =�T. It should be noted that assumption �A2�
corresponds to the local detailed-balance condition, which is
regarded as a key property of stochastic processes for de-
scribing nonequilibrium steady states, since M =�T is de-
rived by imposing this condition on a Langevin equation
with � and M.

In systems under equilibrium conditions, the derivation of
the Langevin equation from a classical mechanical system
was formulated by employing the projection-operator
method �5–7�. However, for nonequilibrium conditions, there
is no satisfactory theory that provides the foundation for the
Langevin equation on the basis of a mechanical system. This
is because it is difficult to treat persistent energy transfer
from the degrees of freedom x to the degrees of freedom �
mathematically. Thus, the use of a Langevin equation to de-
scribe the dynamics of a nonequilibrium system in general is
not justified, although a Langevin-type model is phenomeno-
logically employed in many cases.

Based on this background, it is extremely important to
experimentally validate such an effective description for non-
equilibrium systems, i.e., validate assumptions �A1� and
�A2�. For instance, consider the description of the above-
mentioned system comprising a colloidal particle suspended
in an aqueous solution. We assume that an external force is
exerted to drive the colloidal particle. In this case, x repre-
sents the position of the center of mass of the particle as x
= �x0 ,x1 ,x2�, and � is defined such that �x ,�� represents all
positions and conjugate momenta of atoms constituting the
particle and the solution in an adiabatic container. Static ef-
fects of the solvent can be incorporated in the effective
Hamiltonian H�x�. With these variables, it might be plausible
to accept the assumptions �A1� and �A2�. However, even in
such a simple case, their validity for a nonequilibrium state
can be justified only with experimental confirmation.

This approach might be considered to be very strict. How-
ever, when a system becomes more complicated, we must be
very careful while accepting the validity of an effective de-
scription. For example, in the past decade, many attempts
have been made to describe the motion of a biological motor
protein in terms of several effective variables using a
Langevin-type stochastic model, termed Brownian motor
model �8,9�. On the other hand, by considering the complex
structure of the protein molecule, there is no definite reason
to select a certain variable as an effective one from many
internal degrees of freedom of the molecule. Therefore, it is
useful to establish a criterion to determine experimentally
whether the degrees of freedom selected in a model satisfy
assumptions �A1� and �A2�.

For this purpose, we need a proposition to validate as-
sumptions �A1� and �A2� experimentally. A proposition is
favorable when it does not include any fitting parameters and
involves quantities for explicit measurements. Further, the
best proposition for this purpose is the one that can be rig-
orously proved in a general class of Langevin-type models
that satisfy assumptions �A1� and �A2�. This is because the
experimental examination of this proposition will allow us to
validate assumptions �A1� and �A2� directly.

In order to formulate such a proposition, we determine
certain experimentally measurable quantities. In particular,
we consider the nonequilibrium steady state of a system

comprising several colloidal particles suspended in a solution
under a nonequilibrium condition. We select the spatial co-
ordinates of the center of mass of the particles as the effec-
tive variables x= �x0 ,x1 , . . . ,xN−1�. The basic statistical quan-
tities are the steady current defined as

v̄i � �ẋi�t��0, �1�

and the correlation function of velocity fluctuations

Cij�t� � ��ẋi�t� − v̄i��ẋj�0� − v̄ j��0, �2�

where �¯�0 represents an ensemble average for the nonequi-
librium steady state.

Evidently, v̄i and Cij�t� depend on system details such as
an interaction potential between the particles. In order to
compare the experimental result with the computed value for
a theoretical model, it is essential to tune the parameter val-
ues of the theoretical model. Thus, the determination of only
v̄i and Cij�t� is insufficient for validating the effective de-
scription.

In order to obtain more information on the system, let us
apply a small perturbation force �fp�t�
=�(f0

p�t� , f1
p�t� , . . . , fN−1

p �t�) to it. If its magnitude is suffi-
ciently small ���1�, we can expect that ẋ will linearly re-
spond to the perturbation as

�ẋi�t��� − v̄i = ��
j=0

N−1 	
−�

t

Rij�t − s�f j
p�s�ds + O��2� , �3�

in the limit �→0, where �¯�� represents the ensemble av-
erage in the presence of the perturbation force. Rij�t� is
termed the response function.

According to the fluctuation-dissipation theorem �10�, if
the system is in equilibrium, the response function carries the
same information as the correlation function. This equiva-
lence is expressed by the relation

Cij�t� = TRij�t� for t � 0, �4�

which �termed “the fluctuation-response relation” hereafter�
can be proved by assuming that the system satisfies the
detailed-balance condition. A noteworthy feature of the
fluctuation-response relation is that it is closed only with
experimentally measurable quantities. Hence, the experimen-
tal determination of Cij�t� and Rij�t� enables us to verify
whether the system satisfies the detailed-balance condition.

For the nonequilibrium steady state in which the detailed-
balance condition is not satisfied, it is known that the
fluctuation-response relation of Eq. �4� is violated �4,11–13�.
It should be noted that the response function defined in Eq.
�3� characterizes the linear-response property of the nonequi-
librium steady state and not that of the equilibrium state.
Therefore, the measurement of the response function pro-
vides information that differs from that of the correlation
function. However, since Rij�t� also depends on the system
details, it is unsuitable for validating the effective descrip-
tion.

In such a case, if the violation can be expressed in a
universal form, it is expected that this form may measure the
“distance” of the nonequilibrium system from equilibrium.
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Recently, it has been proved that a nonequilibrium Langevin
model that satisfies �A1� and �A2�, the extent of the violation
is related to the rate of energy dissipation into the heat bath
�J�0 by an equality �14�. According to this theory, the follow-
ing equality holds provided the evolution of x is determined
by a Langevin equation

�J�0 = �
i=0

N−1

�i
v̄i
2 + 	

−�

�

�C̃ii�	� − 2TR̃ii��	��
d	

2
� , �5�

where �i denotes the friction coefficient of xi�t�; C̃ij�	� and

R̃ij�	� represent the Fourier transforms of Cij�t� and Rij�t�,
respectively. Similarly, the Fourier transform of an arbitrary

function A�t� is denoted by Ã�	���−�
� A�t�e−1	tdt; the prime

denotes the real part. In general, when the dynamics of x�t�
are overdamped, �i

−1=lim	→�R̃ii��	� holds. It should be noted
that the right-hand side of Eq. �5� represents the extent of
violation of the fluctuation-response relation.

Next, we show that Eq. �5� qualifies as the best proposi-
tion for experimental examination in order to investigate the
validity of the effective description based on assumptions
�A1� and �A2�. First, it is evident that Eq. �5� represents a
closed relation among experimentally measurable quantities,
without a fitting parameter. Moreover, �J�0 can be obtained
by measuring the input energy, because in the nonequilib-
rium steady state, energy is externally injected at a constant
rate and dissipated into the environment at the same rate.
Second, as shown in Ref. �14�, Eq. �5� holds for systems far
from equilibrium, when the evolution of x is described by a
Langevin-type model. The equality is independent of the
other details of the model. Therefore, it enables quantitative
examination of the relevance of a Langevin-type model to
the system under investigation.

Since a few simple examples were addressed in Ref. �14�,
we provide a detailed description of the equality for several
Langevin models of physical interest. In the following sec-
tions, we analyze many-body systems with and without iner-
tia terms, stochastically or periodically driven systems, and
systems in contact with multiple heat reservoirs. We will
show that it is possible to obtain a similar result for the
relation between the dissipation rate and the extent of viola-
tion of the fluctuation-response relation irrespective of the
model details. Further, we suggest a possible experimental
study on this issue.

This paper is organized as follows. In Sec. II, a Langevin
model with many degrees of freedom is introduced as an
example. Then, Eq. �5� is proved for this model with and
without the inertia terms, followed by several remarks. In
Sec. III generalized forms of Eq. �5� are proved for other
cases, such as a model with a stochastically switching force,
a model driven by a time-dependent external force, and a
model that includes multiple heat reservoirs. Concluding re-
marks are provided in Sec. IV along with a suggestion of
experimental studies related to this topic and future theoret-
ical problems. The proof of the fluctuation-dissipation theo-
rem for Langevin systems under equilibrium is provided in
Appendix A. In Appendix B, Eq. �5� is derived for the case
of a single variable by using a path-integral argument. Fi-

nally, in Appendix C, the proof of a technical lemma used in
the proof in Sec. II is provided.

II. MANY-BODY LANGEVIN SYSTEMS

In this section, Eq. �5� is derived for a Langevin model
with many variables. In particular, a model of colloidal sus-
pension under nonequilibrium conditions is studied, although
the argument can be applied to various Langevin systems of
many variables. The model and its energetic interpretation
are explained in Sec. II A. Then, we present the mathemati-
cal proofs of Eq. �5� for cases with and without the inertial
terms in Secs. II B and II C, respectively. In Sec. II D, we
comment on the result.

A. Model

We consider a three-dimensional system that comprises
n�N /3 spherical particles suspended in an aqueous
solution. For this system, we adopt assumptions
�A1� and �A2� as mentioned in Sec. I by considering the
positions and velocities of the center of mass of the particles
as the effective variables. The three-dimensional position and
velocity of the �th particle are denoted by r����r�

0 ,r�
1 ,r�

2 �
and u����u�

0 ,u�
1 ,u�

2 �, respectively, where �=0,1 , . . . ,n−1.
Hereafter, we collectively denote the positions and
velocities of the particles as

x = �x0, . . . ,xN−1� � �r0
0,r0

1,r0
2, . . . ,r�

0 ,r�
1 ,r�

2 , . . . ,rn−1
0 ,rn−1

1 ,rn−1
2 �

and

v = �v0, . . . ,vN−1�

� �u0
0,u0

1,u0
2, . . . ,u�

0 ,u�
1 ,u�

2 , . . . ,un−1
0 ,un−1

1 ,un−1
2 � ,

respectively.
Based on assumption �A1�, the motion of the particles is

described by the Langevin equations

ẋi�t� = vi�t� , �6�

miv̇i�t� = − �ivi�t� + Fi„x�t�… + �i�t� + �f i
p�t� , �7�

where i=0, . . . ,N−1. In this case, mi and �i represent the
mass and friction coefficient of the �i /3�th particle, respec-
tively, where �a� represents the largest integer that is not
larger than a. Further, based on assumption �A2�, �i�t� is the
zero-mean white Gaussian noise that satisfies

��i�t�� j�t��� = 2�iTij�t − t�� . �8�

The last term on the right-hand side of Eq. �7� represents a
probe force on the ith coordinate with 0���1. An initial
condition is imposed at t= t0, and we consider statistical
quantities in the limit t0→−�.

The second term Fi�x� on the right-hand side of Eq. �7�
represents the force acting on the ith coordinate. For ex-
ample, consider a system of colloidal particles trapped in an
optical potential; a constant driving force fe�0 is applied to
them �see Ref. �15��. This system may be described by se-
lecting Fi�x� as
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Fi�x� = f �
�=0

n−1

i,3� −
�

�xi
�
�=0

n−1

U��r��� −
�

�xi
�
�=0

n−1

�
�=0

n−1
V����r�� − r����

2
,

�9�

where U��r�� represents an optical potential of the �th par-
ticle and V����r��� is an interaction potential between the �th
and �th particles. Similarly, for a system of colloidal suspen-
sion under shear flow described by u��r��= �̂r�, where �̂ is a
constant shear rate tensor, we can select Fi�x� as

Fi�x� = �
�=0

n−1

�
q=0

2

�
q�=0

2

i,�3�+q��qq�r�
q� −

�

�xi
�
�=0

n−1

�
�=0

n−1
V����r�� − r����

2
.

�10�

For a detailed analysis on the behavior of this model, see
Ref. �16�.

Therefore, the model described by Eqs. �6� and �7� can
exhibit various phenomena of many-body Langevin systems;
the following argument does not depend on the form of the
selected force term Fi�x�. However, it should be noted that
the effect of hydrodynamic interaction between the particles
is not included in Eqs. �6� and �7�. Hence, the phenomena
described by the model in these equations are rather ideal.
This might be justified when the mean distances between the
particles are sufficiently large such that hydrodynamic corre-
lation can be neglected. In general, since there are several
methods for including the effect of hydrodynamic interac-
tions between particles �17�, this problem will be addressed
elsewhere.

Let us define the measurable quantities of this system.
Steady currents, velocity correlation functions, and response
functions are already defined in Eqs. �1�–�3�, respectively. It
is well known that when the system is in equilibrium, i.e.,
f =0 in the case of Eq. �9� and �̂=0 in the case of Eq. �10�,
the fluctuation-response relation described in Eq. �4� holds.
This will be demonstrated in Appendix A. On the other hand,
when the force terms contain nonconservative parts, the
fluctuation-response relation is violated in steady states.

Next, we define the rate of energy dissipation according to
Sekimoto’s argument �18�. As discussed in Ref. �18�, it is
natural to define the energy dissipated through the ith coor-
dinate during an infinitesimal interval �t as

Ji�t��t � 	
t

t+�t

��ivi�s� − �i�s�� � dxi�s� , �11�

where the symbol � denotes the multiplication in the sense of
Stratonovich �3�. The total rate of dissipation is the sum of
Ji�t�’s as J�t�=�i=0

N−1Ji�t�. Using the Stratonovich calculus, it
is easy to show that this definition of the dissipation com-
plies with the energy conservation law. For instance, in the
case of the force model represented by Eq. �9�, by summing
Eq. �11� over i and setting �=0, we obtain

J�t��t = − 	
t

t+�t

d�
�=0

n−1 �m3�

2
�u���s��2 + U�„r���s�…

+ �
�=0

n−1
V��„�r���s� − r���s��…

2 � + �
�=0

n−1

„fe�0,u���t�…�t .

�12�

Since the first and second terms on the right-hand side of Eq.
�12� represent the change in the mechanical energy of the
particles and the amount of energy input by the constant
driving force, respectively, this equation expresses energy
conservation by interpreting Ji�t� defined in Eq. �11� as the
energy dissipated into the heat bath through the ith degree of
freedom. Furthermore, the identification of energy dissipa-
tion in this manner was shown to agree with the second law
of thermodynamics �19�.

B. Proof: Underdamped case

With this background, we prove the main result in Eq. �5�.
First, let us express Eqs. �6� and �7� in mathematical forms

dxi�t� = vi�t�dt , �13�

dvi�t� =
− �ivi�t� + Fi„x�t�…

mi
dt +

2�iT

mi
dWi�t� +

�f i
p�t�

mi
dt ,

�14�

where Wi�t� denotes a Wiener process �3�; Wi�t� and Wj�t�
are assumed to be uncorrelated when i� j. Using the Itô
formula, the time derivative of an arbitrary function
A(x�t� ,v�t�) is calculated as

dA„x�t�,v�t�… = �
i=0

N−1

vi�t�
�

�xi
A„x�t�,v�t�…dt

+ �
i=0

N−1 �− �ivi�t� + Fi„x�t�…
mi

�

�vi
A„x�t�,v�t�…

+
�iT

mi
2

�2

�vi
2A„x�t�,v�t�…�dt

+ �
i=0

N−1
�

�vi
A„x�t�,v�t�… · �2�iT

mi
dWi�t�

+
�

mi
fi

p�t�dt� , �15�

where �xi
A(x�t� ,v�t�) represents �xi

A�x ,v� evaluated at
�x ,v�= (x�t� ,v�t�). A similar convention is used throughout
this paper. The symbol · denotes multiplication in the sense
of Itô �3�. In conventional notation, Eq. �15� can be rewritten
as
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d

dt
A„x�t�,v�t�… = �A„x�t�,v�t�…

+ �
i=0

N−1
�

�vi
A„x�t�,v�t�… ·

�i�t� + �f i
p�t�

mi
,

�16�

where

� � �
i=0

N−1 �vi
�

�xi
+

− �ivi + Fi�x�
mi

�

�vi
+

�iT

mi
2

�2

�vi
2� �17�

is the backward Kramers operator. A solution of Eq. �16� can
be expressed in the form

A„x�t�,v�t�… = G�t�A„x�t0�,v�t0�… , �18�

where the operator G�t� is independent of A�x ,v�. By substi-
tuting Eq. �18� into Eq. �16�, we obtain a stochastic differen-
tial equation for G�t� as

dG�t�
dt

= G�t�� + �
i=0

N−1

G�t�
�

�vi
·

�i�t� + �f i
p�t�

mi
, �19�

with the initial condition, G�t0�=1. A formal solution of Eq.
�19� is expressed as

G�t� = e�t−t0�� + 	
t0

t

�
i=0

N−1

G�s�
�

�vi
e�t−s�� ·

�i�s� + �f i
p�s�

mi
ds .

�20�

By identifying A�x ,v�=Fi�x� in Eq. �18� and using Eq. �20�,
we obtain

Fi„x�t�… = e�t−t0��Fi„x�t0�… + 	
t0

t

�
j=0

N−1

�ij„t

− s,x�s�,v�s�… · �� j�s� + �f j
p�s��ds , �21�

where

�ij�t,x,v� � � 1

mj

�

�v j
et�Fi�x� for t � 0,

0 for t � 0.
� �22�

By substituting Eq. �21� into Eq. �7� and averaging it with
�=0, it is shown that

lim
t0→−�

e�t−t0��Fi„x�t0�… = �iv̄i, �23�

since the left-hand side does not depend on t. Hereafter, the
limit t0→−� will be considered.

The formal integration of Eq. �7� yields

vi�t� = 	
−�

t

Hi�t − s� · �Fi„x�s�… + �i�s� + �f i
p�s��ds , �24�

where

Hi�t� � � 1

mi
e−�it/mi for t � 0,

0 for t � 0.
� �25�

By using Eq. �21�, we rewrite Eq. �24� as

vi�t� − v̄i = 	
−�

t

�
j=0

N−1

Kij„t − s,x�s�,v�s�… · �� j�s� + �f j
p�s��ds ,

�26�

where

Kij�t,x,v� � 	
0

�

Hi�s��ij�t − s,x,v�ds + Hi�t�ij . �27�

Therefore, the average of Eq. �26� is expressed as

�vi�t��� − v̄i = �	
−�

t

�
j=0

N−1

�Kij„t − s,x�s�,v�s�…�0f j
p�s�ds + O��2� .

�28�

Since Eq. �28� holds irrespective of the functional form of
f i

p�t�, by comparing Eqs. �3� and �28�, we obtain

Rij�t − s� = �Kij„t − s,x�s�,v�s�…�0. �29�

Next, Eq. �11� is rewritten as

Ji�t��t = 	
t

t+�t

��ivi�s�2ds − 2�iTvi�s� � dWi�s�� . �30�

Now, we set �=0. By using the lemma described in Appen-
dix C, Eqs. �26� and �29� lead to

�vi�s� � dWi�s��0 = lim
s→0+

�iT

2
Rii�s�ds . �31�

By definition, since Rij�t�=0 for t�0

lim
t→0+

Rii�t� = 2	
−�

�

R̃ii��	�
d	

2

. �32�

From

�vi�t�2�0 = v̄i
2 + Cii�0� = v̄i

2 + 	
−�

�

C̃ii�	�
d	

2

, �33�

we finally obtain

�Ji�0 = �i
v̄i
2 + 	

−�

�

�C̃ii�	� − 2TR̃ii��	��
d	

2
� . �34�

Since the total rate of dissipation J�t� is the sum of the rates
of dissipation through the ith degree of freedom Ji�t�, Eq. �5�
is immediately obtained.

C. Proof: Overdamped case

In Eqs. �6� and �7�, when mi=0, the Langevin equation
takes an overdamped form
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�iẋi�t� = Fi„x�t�… + �i�t� + �f i
p�t� . �35�

For this model, the proof of equalities in Eq. �34� requires a
special treatment because Cii�0� and Rii�0� are divergent in
this case. In the following, we prove Eq. �34� by considering
this singularity. In this case, we interpret the correlation
function as Cij�t����ẋi�t�− v̄i� � �ẋj�0�− v̄ j��0.

First, by using the Itô formula, the time evolution of an
arbitrary function A(x�t�) is expressed as

d

dt
A„x�t�… = �A„x�t�… + �

i=0

N−1
�

�xi
A„x�t�… ·

�i�t� + �f i
p�t�

�i
,

�36�

where

� � �
i=0

N−1 �Fi„x…

�i

�

�xi
+

T

�i

�2

�xi
2� �37�

is the backward Fokker-Planck operator. In order to solve
Eq. �36�, we introduce an operator G�t� as

A„x�t�… = G�t�A„x�t0�… , �38�

where G�t� is independent of A�x�. By substituting Eq. �38�
into Eq. �36�, we obtain an equation for G�t� as

dG�t�
dt

= G�t�� + �
i=0

N−1

G�t�
�

�xi
·

�i�t� + �f i
p�t�

�i
. �39�

A formal solution of Eq. �39� is given by

G�t� = e�t−t0�� + 	
t0

t

�
i=0

N−1

G�s�
�

�xi
e�t−s�� ·

�i�s� + �f i
p�s�

�i
ds .

�40�

By setting A�x�=Fi�x�, we immediately obtain

Fi„x�t�… = e�t−t0��Fi„x�t0�… + 	
t0

t

�
j=0

N−1

�ij„t − s,x�s�…

· �� j�s� + �f j
p�s��ds , �41�

where

�ij�t,x� � � 1

� j

�

�xj
et�Fi�x� for t � 0,

0 for t � 0.
� �42�

By substituting Eq. �41� into Eq. �35� and averaging it with
�=0, it is found that

lim
t0→−�

e�t−t0��Fi„x�t0�… = �iv̄i. �43�

Hereafter, we consider the limit t0→−�. The substitution of
Eq. �41� into Eq. �35� leads to the equation

ẋi�t� − v̄i = 	
−�

t

�
j=0

N−1

Kij„t − s,x�s�… · �� j�s� + �f j
p�s��ds ,

�44�

where

Kij�t,x� � � 1

�i
��ij�t,x� + ij�t�� for t � 0,

0 for t � 0.
� �45�

By comparing Eq. �3� with the average of Eq. �44�, we find

Rij�t − s� = �Kij„t − s,x�s�…�0. �46�

Henceforth, we discretize the time as tk=k�t with an in-
terval �t in order to clarify our argument mathematically. By
setting �=0, the discretized form of the Langevin equation
�35� becomes

�i�xi
k =

Fi�xk+1� + Fi�xk�
2

�t + 2�iT�Wi
k + O��t3/2� ,

�47�

where xk= �xi
k���xi�tk��, �xi

k�xi
k+1−xi

k, and �Wi
k�Wi�tk+1�

−Wi�tk� �see Appendix A�. Similarly, Eq. �11� is discretized
as

Ji�tk��t =
Fi�xk+1� + Fi�xk�

2
�xi

k + O��t2� , �48�

where Eq. �35� and the definition of the symbol � have been
used. By combining Eqs. �47� and �48�, a straightforward
calculation yields

�Ji�tk��0 = �iv̄i
2 + �i���xi

k

�t
− v̄i�2�

0
−

2T

�t

−2T

�i

��Fi�xk+1� + Fi�xk���Wi
k�0

2�t
+ O��t1/2� .

�49�

For the limit �t→0, the second and third terms on the right-
hand side of Eq. �49� can be transformed as

lim
�t→0

��i���xi
k

�t
− v̄i�2�

0
−

2T

�t
� = 	

−�

�

��iC̃ii�	� − 2T�
d	

2

.

�50�

Next, the discretized form of Eq. �41� with �=0 becomes

Fi�xk� = �iv̄i + �
l=1

�

�
j=0

N−1

�ij�tl,xk−l�2� jT�Wj
k−l. �51�

Hence, the fourth term on the right-hand side of Eq. �49� is
calculated as

2T

�i

��Fi�xk+1� + Fi�xk���Wi
k�0

2�t
= T��ii��t,xk��0, �52�

where the relation ��Wi
k�Wj

l�0=ijkl�t is used. According
to Fourier’s theorem
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lim
�t→0+

��ii��t,xk��0 + ��ii�− �t,xk��0

2
= 	

−�

�

��iR̃ii��	� − 1�
d	

2

,

�53�

where Eqs. �45� and �46� are used. By combining Eqs. �49�,
�50�, and �53�, we finally obtain the following expression
with the limit �t→0+

�Ji�0 = �i
v̄i
2 + 	

−�

�

�C̃ii�	� − 2TR̃ii��	��
d	

2
� . �54�

It should be noted that the integral on the right-hand side of
Eq. �54� is convergent in the limit �t→0+. Since the total
rate of dissipation J�t� is the sum of the dissipation rate
through each degree of freedom Ji�t�, Eq. �5� is immediately
obtained.

D. Remarks

We present several comments on the proof in the previous
subsections. First, the final result is independent of the se-
lected force term Fi�x�. In particular, since no smallness of
the driving forces is assumed in the derivation, Eqs. �34� and
�54� hold even when the system is far from equilibrium.
Their right-hand sides represent the extent of violation of the
fluctuation-response relation. These equalities imply that the
rate of energy dissipation through the ith degree of freedom
is directly related to the violation of the fluctuation-response
relation for this degree of freedom.

Second, in the overdamped case, we obtain

�i
−1 = lim

	→�
R̃ii��	� , �55�

from Eq. �46� by using lim	→��̃ij�	 ,x�=0. It should be
noted that the inertial effect cannot be observed in standard
experiments on colloidal systems. Thus, all the quantities on
the right-hand side of Eq. �5� can be directly measured ex-
perimentally.

Third, Eq. �34� can be rewritten in a more compact form
in the underdamped case. By using Fourier’s theorem and

Eq. �29�, we can calculate �−�
� R̃ii��	�d	 /2
= �Rii�0+ �

+Rii�0− �� /2=1/ �2mi�. Therefore, Eq. �34� can be expressed
as

�Ji�0 =
�i

mi
�mi�vi�t�2�0 − T� . �56�

Thus, the rate of dissipation through the ith degree of free-
dom can be expressed as the deviation of the kinetic tem-
perature of this degree of freedom from the temperature of
the heat bath. In the overdamped case, we cannot give such
an interpretation since the kinetic energy cannot be defined.
Moreover, for experimental use, Eq. �34� is more convenient
than Eq. �56�, because in many experiments, accurate deter-
mination of the kinetic temperature requires an extremely
fine time resolution.

Fourth, we demonstrate that the result presented in the
previous subsections can be generalized further. For ex-
ample, the following quantity:

Iij�t� � 1
2 �vi�t� � �� jv j�0� − � j�0�� + vi�0� � �� jv j�t� − � j�t���0

�57�

can be rewritten in terms of the fluctuation-response relation
violation as

Iij�t� = � j
v̄iv̄ j + 	
−�

�

�C̃ij� �	� − 2TR̃ij� �	��e−−1	td	

2
� .

�58�

For the underdamped case, Eq. �58� can be obtained by sub-
stituting Eq. �26� into Eq. �57� and using the lemma in Ap-
pendix C �see Appendix B for the overdamped case�. Since
Iii�0�= �Ji�0, Eq. �58� is regarded as a generalization of Eq.
�34�. In addition, the diagonal elements of Eq. �57� are force-
velocity correlation functions expressed as

Iii�t� = 1
2 �vi�t� � Fi„x�0�… + vi�0� � Fi„x�t�…�0, �59�

which is immediately obtained from Eqs. �35� and �57� with
�=0 in the overdamped case. In the underdamped case, Eq.
�59� follows from Eqs. �7� and �57� and the fact that �vi�t�
� v̇i�0��0=−�vi�0� � v̇i�t��0. In general, the physical signifi-
cance of the off-diagonal elements of the violation has not
yet been determined.

Finally, we discuss a relation between Eq. �5� and the
linear response theory �10,20�. In this theory, the power loss
that is proportional to the square of the driving force is dis-
cussed in terms of the response function. It should be noted
that the response function considered in this theory is defined
only at equilibrium. Therefore, this response function de-
noted by Rij

eq�t� characterizes the linear response from the
equilibrium state. For example, we consider a force model
Fi�x�= f i−�xi

U�x�, where f i is a constant driving force and
U�x� is a potential. When the driving forces are sufficiently
small, we can calculate the dissipation rate �linear power
loss� from Eqs. �7� and �11� and the definition of Rij

eq�t� as

�J�0 = �
i=0

N−1

�
j=0

N−1

R̃ij
eq�0�f if j + O�f2� , �60�

which is in accordance with the linear-response theory
�10,20�. On the other hand, our result in Eq. �5� is valid
independent of the magnitude of the driving forces �it should

be noted that R̃ij�	� in Eq. �5� differs from R̃ij
eq�	� when f i

�0�. Hence, Eq. �5� should agree with Eq. �60� when the
driving forces are sufficiently small. Thus, it might be inter-
esting to demonstrate directly the equivalence between these
two expressions.

III. OTHER EXAMPLES

In this section, it is demonstrated that the violation of the
fluctuation-response relation is related to the energy dissipa-
tion for the other types of Langevin models. We consider the
following models: a model with stochastically switching po-
tentials, a system driven by a temporally periodic force, and
a system in contact with multiple heat reservoirs. These mod-
els were originally introduced phenomenologically in order
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to describe particular nonequilibrium phenomena without
microscopic foundations. In the following subsections, we
present a method by which Eq. �5� can be extended to each
case; this will allow us to examine the relevance of each
model to describe a certain phenomenon.

A. Stochastically driven system

First, a model with stochastically switching potentials is
considered. For simplicity, we consider a model with one
spatial degree of freedom. Let x be the position of a particle
in one-dimensional space. We assume that this particle has
an internal degree of freedom denoted by �. Moreover, let
this particle be exerted a potential force F��−�xU��x� de-
pending on �. Therefore, the model is expressed as

ẋ�t� = v�t� , �61�

mv̇�t� = − �v�t� + F��t�„x�t�… + ��t� + �fp�t� , �62�

where m and � denote the mass and friction coefficient of the
particle, respectively, and ��t� represents the zero-mean
white Gaussian noise that satisfies

���t���t��� = 2�T�t − t�� . �63�

As mentioned earlier, �fp�t� is a probe force with a suffi-
ciently small �. We assume that ��t� is a Poisson process in
�0,1�. The transition rates from state 0 to state 1 and vice
versa are denoted by �10�x� and �01�x�, respectively; they
can depend on the position x of the particle. The following
analysis can be extended to the case that involves two or
more internal states. This type of model was originally sug-
gested as the model of a motor protein; it was termed flash-
ing ratchet �8,9,21�.

For this model, the rate of energy dissipation J�t� is de-
fined as

J�t��t � 	
t

t+�t

��v�s� − ��s�� � dx�s� , �64�

where �t is an infinitesimal time interval. It has been shown
that the following equality holds �18,22�

J�t��t = − 	
t

t+�t

d�m

2
v�s�2 + U��t�„x�s�…�

+ �
j

�U���̂j+0�„x��̂ j�… − U���̂j−0�„x��̂ j�…� , �65�

where �=0 and �̂ j for j=1,2 , . . . denotes the time at which
the transition of the internal state ��t� occurs. The summa-
tion of the second term on the right-hand side is over j that
satisfies t��̂ j � t+�t. Since this term can be regarded as an
energy gain accompanied with state transitions, Eq. �65� can
be interpreted as the energy conservation law in the case of
this model.

Here, we show that the rate of energy dissipation J�t� can
be expressed in terms of the violation of the fluctuation-
response relation as

�J�0 = �
v̄2 + 	
−�

�

�C̃�	� − 2TR̃��	��
d	

2
� , �66�

where the definition of the velocity correlation function C�t�
and the response function R�t� are similar to those in Eqs. �2�
and �3�, respectively. Equation �66� is identical to Eq. �5�
with a single spatial degree of freedom.

Now, we prove Eq. �66�. As in the previous case, we study
the time evolution of an arbitrary function A��t�(x�t� ,v�t�).
First, we fix a trajectory of the particle �x�t� ,v�t�� and a
history of transitions represented by �̂ j for j=1,2 , . . .. For
this history, we select a small time interval �t in which at

most one transition can occur. Let Ẑ���(t ;x�t�)�t=1 when a
transition from a state � to another state �� occurs in the the

interval �t , t+�t�; otherwise Ẑ���(t ;x�t�)�t=0. It should be

noted that the expectation value of Ẑ���(t ;x�t�) over the en-
semble of transition histories for a fixed value of x�t� is equal
to the transition rate ����(x�t�).

Then, the time evolution of A��t�(x�t� ,v�t�) during �t is
written as

A��t+�t�„x�t + �t�,v�t + �t�… − A��t�„x�t�,v�t�…

= A��t+�t�„x�t�,v�t�… − A��t�„x�t�,v�t�…

+ A��t�„x�t + �t�,v�t + �t�… − A��t�„x�t�,v�t�… + O��t3/2� .

�67�

The first term on the right-hand side can be expressed as

A��t+�t�„x�t�,v�t�… − A��t�„x�t�,v�t�…

= ��t�0�A1„x�t�,v�t�… − A0„x�t�,v�t�…�Ẑ10„t;x�t�…�t

+ ��t�1�A0„x�t�,v�t�… − A0„x�t�,v�t�…�Ẑ01„t;x�t�…�t

+ O��t3/2� . �68�

On the other hand, by using the Itô formula, the second term
on the right-hand side of Eq. �67� is expressed as

A��t�„x�t + �t�,v�t + �t�… − A��t��x�t�,v�t��

= �
����0,1�

��t������A��„x�t�,v�t�…�t

+ �
����0,1�

��t���
�

�v
A��„x�t�,v�t�…

�
2�T�W�t� + �fp�t��t

m
+ O��t3/2� , �69�

where �� denotes the backward Kramers operator corre-
sponding to each state

�� � v
�

�x
+

− �v + F��x�
m

�

�v
+

�T

m2

�2

�v2 . �70�

Hence, by combining Eqs. �67�–�69� and taking the limit
�t→0, we obtain a general expression of the time derivative
of A��t�(x�t� ,v�t�) as
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d

dt
A��t�„x�t�,v�t�…

= ���t�0��t�1���0 − �10„x�t�… �10„x�t�…
�01„x�t�… �1 − �01„x�t�…

�
��A0„x�t�,v�t�…

A1„x�t�,v�t�…
� + ���t�0��t�1�

��t� + �fp�t�
m

�

�v

· �A0„x�t�,v�t�…
A1„x�t�,v�t�…

� + ���t�0��t�1�

· �− �10„t;x�t�… �10„t;x�t�…
�01„t;x�t�… − �01„t;x�t�…

��A0„x�t�,v�t�…
A1„x�t�,v�t�…

� ,

�71�

where ����(t ;x�t�)� Ẑ���(t ;x�t�)−����(x�t�). The symbol ·
in the last line of Eq. �71� implies that ����(t ;x�t�) is statis-
tically independent of ��t� �Itô-type definition�.

Next, we introduce an operator G�t� such that

A��t�„x�t�,v�t�… = G�t�A��t0�„x�t0�,v�t0�… . �72�

By substituting Eq. �72� into Eq. �71�, we obtain an equation
for G�t�

G�t� = G�t�� + G�t�
�

�v
·

��t� + �fp�t�
m

+ G�t� · ��t;x� ,

�73�

where

� � ��0�1���0 − �10�x� �10�x�
�01�x� �1 − �01�x�

��1

1
� �74�

and

��t;x� � ��0�1��− �10�t;x� �10�t;x�
�01�t;x� − �01�t;x�

��1

1
� . �75�

The initial condition is G�t0�=1. A formal solution of Eq.
�73� is

G�t� = e�t−t0�� + 	
t0

t �G�s�
�

�v
e�t−s�� ·

��s� + �fp�s�
m

+ G�s�e�t−s�� · ��s;x��ds . �76�

Therefore, the force F��t�(x�t�) is expressed as

F��t�„x�t�… = e�t−t0��F��t0��„x�t0�…�v=v�t0�

+ 	
t0

t

���s�„t − s,x�s�,v�s�… · „��s� + �fp�s�…ds

+ 	
t0

t

e�t−s��F��s��„x�s�…�v=v�s� · �„s;x�s�…ds ,

�77�

where

���t,x,v� � � 1

m

�

�v
et�F��x� for t � 0,

0 for t � 0.
� �78�

Since ��(s ,x�s�)�0=0

lim
t0→−�

e�t−t0��F��t0��„x�t0�…�v=v�t0� = �v̄ . �79�

Henceforth, we consider the limit t0→−�.
Next, Eq. �62� is formally solved as

v�t� = 	
−�

t

H�t − s� · �F��s�„x�s�… + ��s� + �f i
p�s��ds ,

�80�

where

H�t� � � 1

m
e−�t/m for t � 0,

0 for t � 0.
� �81�

By substituting Eq. �77� into Eq. �80�, we obtain

v�t� − v̄ = 	
−�

t

K��s�„t − s,x�s�,v�s�… · ���s� + �fp�s��ds

+ 	
−�

t

H�t − s�	
−�

s

e�s−s���

�F��s���„x�s��…�v=v�s�� · �„s�;x�s��…ds�ds , �82�

where

K��t,x,v� � 	
0

�

H�s����t − s,x,v�ds + H�t� . �83�

The average of Eq. �82� and a comparison with the definition
of the response function results in

R�t − s� = �K��s�„t − s,x�s�,v�s�…�0. �84�

The right-hand side is a function of t-s due to the time trans-
lational symmetry of the steady state.

Since Eq. �64� can be rewritten as

J�t��t = 	
t

t+�t

��v�s�2ds − 2�Tv�s� � dW�s�� , �85�

we obtain Eq. �34� based on an argument similar to that in
Sec. II B and by using Eqs. �82� and �84�.

B. Time-dependent system

We consider a case in which the driving force is time
dependent. For simplicity, only a system with a single spatial
degree of freedom is considered, although the analysis pre-
sented here can be generalized to a multidimensional case.
The model is expressed as

ẋ�t� = v�t� , �86�
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mv̇�t� = − �v�t� + F„x�t�,t… + ��t� + �fp�t� , �87�

where the notations are the same as those in Eqs. �61� and
�62�. The second term on the right-hand side of Eq. �87�
F�x , t� represents a time-dependent force. For example, we
might assume that F�x , t� consists of conservative and non-
conservative parts as F�x , t�=−�xU�x�+ f�t�, where f�t� is a
time-dependent driving force, although the final result is in-
dependent of this assumption. This model can be regarded as
the model of macroionic current in the presence of an ac
electric field; it was also studied in the context of a Brownian
ratchet �23�.

The rate of energy dissipation is defined according to Eq.
�64�. In this case, the law of energy conservation is expressed
as

J�t��t = − 	
t

t+�t

d�m

2
v�s�2 + U„x�s�…� + 	

t

t+�t

f�s� � dx�s� .

�88�

Since the system does not possess time-translational invari-
ance in the presence of the time-dependent driving force, we
define the velocity correlation function as

C��,t� � ��v�t + �� − v̄�t + ����v�t� − v̄�t���0, �89�

where v̄�t���v�t��0 is the ensemble-averaged velocity at
time t. The response function in this case is defined as

�v�t��� − v̄�t� = �	
−�

t

R�t − s,s�fp�s�ds + O��2� . �90�

With this background, we present the equality between
the rate of dissipation and the violation of the fluctuation-
response relation

�J�t��0 = �
v̄�t�2 + 	
−�

�

�C̃�	,t� − 2TR̃��	,t��
d	

2
� ,

�91�

where Ã�	 , t���−�
� A�� , t�ei	�d� for an arbitrary function,

A�� , t�. Thus, the result can be generalized for systems with-
out time-translational invariance.

We now derive Eq. �91�. First, we introduce a variable �
and rewrite Eqs. �86� and �87� in an autonomous form as

ẋ�t� = v�t� , �92�

mv̇�t� = − �v�t� + F„x�t�,��t�… + ��t� + �fp�t� , �93�

�̇�t� = 1, �94�

where ��t0�= t0. By using the Itô formula, the time evolution
of an arbitrary function, A(x�t� ,v�t� ,��t�), is obtained as

d

dt
A„x�t�,v�t�,��t�… = �A„x�t�,v�t�,��t�…

+
�

�v
A„x�t�,v�t�,��t�… ·

��t� + �fp�t�
m

,

�95�

where

� � v
�

�x
+

− �v + F�x,��
m

�

�v
+

�T

m2

�2

�v2 +
�

��
. �96�

We introduce an operator that is independent of A such that

A„x�t�,v�t�,��t�… = G�t�A„x�t0�,v�t0�,��t0�… . �97�

By substituting Eq. �97� into Eq. �95�, we obtain a stochastic
differential equation for G�t� as

G�t� = G�t�� +
��t� + �fp�t�

m
· G�t�

�

�v
, �98�

where the initial condition is G�t0�=1. A formal solution of
Eq. �98� is

G�t� = e�t−t0�� + 	
t0

t

G�s�
�

�v
e�t−s�� ·

��s� + �fp�s�
m

ds . �99�

Therefore, F(x�t� ,��t�) can be expressed as

F„x�t�,��t�… = G�t�F�„x�t0�,��t0�…�v=v�t0�

= e�t−t0��F�„x�t0�,��t0�…�v=v�t0�

+ 	
t0

t

�„t − s,x�s�,v�s�,��s�…

· †��s� + �fp�s�‡ds , �100�

where

��t,x,v,�� � � 1

m

�

�v
et�F�x,�� for t � 0,

0 for t � 0.
� �101�

By taking the limit t0→−�, the first term on the right-
hand side of Eq. �100� converges to a function of t only

lim
t0→−�

e�t−t0��F�„x�t0�,��t0�…�v=v�t0� = F̄�t� . �102�

We therefore derive

�v̄�t� = F̄�t� . �103�

A formal solution of Eq. �87� is given as

v�t� = 	
−�

t

H�t − s� · �F„x�s�,s… + ��s� + �f i
p�s��ds ,

�104�

where
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H�t� � � 1

m
e−�t/m for t � 0,

0 for t � 0.
� �105�

By substituting Eq. �100� into Eq. �104�, we obtain

v�t� − v̄�t� = 	
−�

t

K„t − s,x�s�,v�s�,��s�… · ���s� + �fp�s��ds ,

�106�

where

K�t,x,v,�� � 	
0

�

H�s���t − s,x,v,��ds + H�t� . �107�

The average of Eq. �106� yields

R�t − s,s� = �K„t − s,x�s�,v�s�,��s�…�0. �108�

It should be noted that the s dependence of the right-hand
side of Eq. �108� is retained after taking the average; this can
be confirmed from Eqs. �97� and �99�.

Since the definition of J�t� in Eq. �64� can be rewritten as
Eq. �85�, we can obtain Eq. �91� based on an argument simi-
lar to that in Sec. II B and by using Eqs. �106� and �108�.

C. Multiple heat reservoirs

Finally, we address systems with multiple heat reservoirs
by considering two cases. The first case involves a heat bath
with a spatially inhomogeneous temperature profile. Such a
model can be considered as a model of thermophoresis; it
was first analyzed by Büttiker and Landauer �24,25�. In par-
ticular, we investigate the model represented by Eqs. �6� and
�7�. Let the spatial profile of the temperature be T�r��. In this
case, the noise intensity 2�iT in Eq. �8� is replaced with
2�iT(r���t�) for �= �i /3�. In order to avoid any ambiguity due
to multiplicative noise, we assume that the model can be
represented in the underdamped form, i.e., mi�0.

The definitions of the measurable quantities and the rate
of energy dissipation are the same as Eqs. �1�–�3� and �11�.
For this case, the following equality is derived:

�Ji�0 = �i
v̄i
2 + 	

−�

�

�C̃ii�	� − 2T̄iR̃ii��	��
d	

2
� , �109�

where T̄i��T(r���·�)�0 for �= �i /3� is the steady temperature
averaged using a steady distribution with respect to x. Since
the proof of Eq. �109� is almost similar to that in Sec. II B,
we have not mentioned it here.

In the second case, each degree of freedom in a system is
in contact with a different heat bath of a different tempera-
ture. We reinvestigate the same underdamped model de-
scribed by Eq. �6� and �7�; however, in this case, the tem-
perature depends on the index of the degrees of freedom.
Therefore, the variance of �i�t� is considered as 2�iTi. The
definitions of the measurable quantities are identical to ones
described by Eqs. �1�–�3�. The definition of dissipation rates
is the same as Eq. �11�.

For this model, we can prove the equality

�Ji�0 = �i
v̄i
2 + 	

−�

�

�C̃ii�	� − 2TiR̃ii��	��
d	

2
� . �110�

by replacing T with Ti in the proof given in Sec. II B.
The above argument can be applied to the problem of heat

conduction. For instance, let us consider the one-dimensional
lattice heat conduction. We assume xi�t� to be the one-
dimensional position of the ith particle, and vi�t� to be its
velocity. The force term is selected as

Fi�x� = − a�xi − i�� − b�xi − i��3 + c�xi+1 − 2xi + xi−1� ,

�111�

where � denotes the lattice constant and a, b, and c are
constants. We set x−1�x0 and xN�xN−1. Sites at the both
ends of the chain are assumed to be connected to heat baths
of different temperatures as T0�TN−1, while the other sites
are not connected to a heat bath: �i=0 for i�0,N−1. Evi-
dently, Eq. �110� holds for this model. Further, −�J0�0�0
represents the heat transferred from the high-temperature
heat bath, and �JN−1�0�0 represents the heat dissipated into
the low-temperature heat bath. Due to the energy balance in
the system, �J0�0+ �JN−1�0=0 holds. Therefore, −�J0�0

�=�JN−1�0� represents the heat flux through the system. It
should be noted that �Ji�0=0 for i�0, N−1 in this case.
Thus, the heat flux through the system is explicitly related to
the violation of the fluctuation-response relation at the end of
the chain. On the other hand, the relation between the heat
flux in the system and the violation of the fluctuation-
response relation inside �bulk� the system has not yet been
determined.

IV. CONCLUDING REMARKS

A. Conclusion

In this paper, we presented several results with regard to
the relationship between the rate of energy dissipation and
the violation of the fluctuation-response relation for various
types of nonequilibrium Langevin models. The most impor-
tant feature of these results is that they enable the determi-
nation of the rate of energy dissipation based only on experi-
mentally measurable quantities and without detailed
knowledge on the system. Hence, our results provide a
proposition that can be experimentally verified. The experi-
mental verification of the equality, when possible, ensures
that the system is in fact a Langevin-type system, i.e., as-
sumptions �A1� and �A2� are acceptable. If the equality can-
not be established experimentally, it implies the existence of
other slow degrees of freedom that were not considered.
Hence, the equality presented in this paper serves as a “check
sum.”

The present result is also suitable for practical use. If it
has been already established that the system in concern is
well described with a Langevin model, Eqs. �34� and �54�
will provide a measure of the contribution of each degree of
freedom to energy dissipation. An advantage of our result is
that we do not require the detailed knowledge on a system to
determine the rate of dissipation. This enables the determi-
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nation of the relative importance of each degree of freedom
in a complicated system from the viewpoint of energetics.

B. Suggestion of experiments

In order to demonstrate the above mentioned concepts, we
suggest a possible experiment on a motor protein. Okada
et al. reported that a motor protein termed KIF1A, a single-
headed kinesin superfamily protein, can be modeled as a
flashing ratchet model �21,26�. This is because the microtu-
bule exhibits a quasi-one-dimensional periodic structure on
which a KIF1A molecule moves processively and KIF1A has
two internal states, strong and weak binding states, according
to the chemical state of the nucleotide hydrolyzed in the
molecule. Okada et al. explained the results of single-
molecule experiments using a flashing ratchet model by
adopting several fitting parameters �26�. However, the rel-
evance of these parameters has not yet been experimentally
confirmed, because of certain difficulties in experimental
techniques.

If the argument that the KIF1A molecule can be described
as a flashing ratchet is valid, Eq. �66� should hold for this
molecule according to the result in Sec. III A. As mentioned
above, Eq. �66� can be verified without specifying the model
parameters such as the profile of periodic potentials. The
right-hand side of Eq. �66� might be determined by employ-
ing the present techniques of the single-molecule experi-
ment. On the other hand, the rate of chemical free energy
consumption by the motor molecule can be estimated by
means of biochemical techniques. If these quantities are in
agreement, the relevance of a Langevin-type model to this
molecule is quantitatively ensured. In other words, only the
center of mass is the slow variable for this molecule, and it
contributes to energy dissipation. However, if the right-hand
side of Eq. �66� is less than the rate of chemical energy input,
it implies the existence of more degrees of freedom that
should be considered and that the flashing ratchet model is
inappropriate.

Moreover, the experimental determination of �Ji�0 for the
center of mass of the protein using Eq. �66� reveals the
amount of chemical energy input that is converted into the
translational motion of the motor molecule. Since the ques-
tion “how much chemical energy is converted into mechani-
cal energy?” is one of the most important problems regarding
a motor protein, such an experimental study will serve to
answer it.

C. Future perspectives

Finally, we present future theoretical problems for consid-
eration. First, although our argument began with the Lange-
vin equations, it should be possible to derive the same result
by beginning with a microscopic mechanical model that sat-
isfies the fundamental assumptions �A1� and �A2�. This will
not only provide another perspective of the problem but will
also help to generalize the framework of the theory. We re-
mark that a simple case has been analyzed quite recently
�27�.

Further generalizations of Eq. �5� for cases that are not
considered in the present paper might be possible. For ex-

ample, it might be interesting to consider a case with a finite-
time correlation of noise �generalized Langevin equation �6��
based on our framework. The effect of hydrodynamic inter-
action between particles requires careful consideration. Be-
cause the hydrodynamic effect may be crucial for applying
our theory to macromolecules �17� such as biomolecular ma-
chinery, we should examine this problem in greater detail.

Since our theory is based on the assumption of the sepa-
ration of time scales, it cannot be applied to cases in which
the separation of time scales is not distinct. For example, our
theory currently does not cover an atomic level description
of traditional nonequilibrium systems such as shear flow sys-
tems, heat conduction systems and electric conduction sys-
tems. Even in such a case, we believe that we can obtain
some information on a system by quantifying a degree of
fluctuation-dissipation violation. More research is required in
this regard.
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APPENDIX A: FLUCTUATION-DISSIPATION THEOREM

In this appendix, we derive the fluctuation-dissipation
theorem for the case of equilibrium. Although the following
argument is applicable to the overdamped system, it can be
extended to the underdamped case without much difficulty;
both cases yield the same result.

Let x��x0 , . . . ,xN−1� be a set of dynamical variables un-
der study. Let the evolution equation of xi be expressed as

�iẋi�t� = −
�U„x�t�…

�xi
+ �f i

p�t� + �i�t� , �A1�

where �f i
p�t� denotes a small perturbation force and �i�t� rep-

resents the Gaussian white noise that satisfies

��i�t�� j�t��� = 2�iTij�t − t�� . �A2�

The initial condition of xi�t� is set at t=−�.
In this model, the response function Rij�t� is defined as

�ẋi�t��� = �	
0

�

�
j=0

N−1

Rij�s�f j
p�t − s�ds + O��2� . �A3�

It should be noted that Rij�t�=0 for t�0 due to the causality.
Since Rij�t� does not depend on the selection of �f j

p�t��, it can
be determined by considering a special situation in which
f j

p�t�=1 for t�0 and f j
p�t�=0 for t�0, only for a specific

value of j. In this case, Eq. �A3� becomes

�ẋi�t���,j
tr = �	

0

t

Rij�s�ds , �A4�

where � ��,j
tr denotes the average for this situation.
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Then, by defining the time-correlation function of velocity
as

Cij�t� � �ẋi�t� � ẋj�0��0, �A5�

the fluctuation-response relation implies

Cij�t� = T�Rij�t� + Rji�− t�� . �A6�

In the following, first, Eq. �A6� is proved by focusing on the
single component case �N=1�. Next, a conventional deriva-
tion without mathematical rigor is briefly discussed, which
might be useful to argue physical problems. Finally, the gen-
eralization of the proof to the multicomponent case is ex-
plained briefly, since it is straightforward.

1. Discretized form

As observed in Eqs. �A1� and �A2�, C�0� and R�0� are
divergent. Therefore, in order to state the theorem described
in Eq. �A6� without ambiguity, we investigate the discretized
form of Eq. �A1�

��xk+1 − xk� = −
dU�xk�

dxk �t + 2�T�Wk + �fk�t + O„��t�3/2
… ,

�A7�

where �t represents the time interval of the discretization;
we set �=�0, xk=x0�k�t�, �Wk=W(�k+1��t)−W�k�t�, and
fk= fp�k�t�. Further, �Wk obeys the Gaussian distribution
with

��Wk�Wl� = kl�t . �A8�

It should be noted that in Eq. �A7�, the estimation
�Wk=O(��t�1/2) is assumed, which is expected from Eq.
�A8�.

In this discretized model represented by Eq. �A7�, the
time correlation function Ck is defined as

Ck = � xk+1 − xk

�t

x1 − x0

�t
�

0
. �A9�

Similarly, by discretizing Eq. �A4�, the response function Rk

is defined as

� xk − xk−1

�t
�

�,0

tr

= ��
l=0

k−1

�tRl, �A10�

where fk=1 for k�0 is assumed. Therefore, the fluctuation-
response relation in Eq. �A6� should be regarded as the con-
tinuum form of the relation

Ck = T�Rk + R−k� �A11�

in the limit �t→0, k→� for fixed k�t. Moreover, Rk=0 for
k�0, C0=2TR0 for k=0, and Ck=TRk for k�0.

2. Proof of Eq. (A11)

First, from Eqs. �A9� and �A10�, Eq. �A11� is explicitly
written as

� xk − xk−1

�t
�

�,0

tr

= ���t�
l=0

k−1

�l� xl+1 − xl

�t

x1 − x0

�t
�

0
+ O��2� ,

�A12�

where �k=1 for k�1 and �0=1/2. The following is a proof
of this expression.

The transition probability P��xk→xk+1� from xk to xk+1

�for k�0� is determined from

P��xk → xk+1�dxk+1 = d��Wk� 1

2
�t
e−���Wk�2/2�t�.

�A13�

By using Eq. �A7�, this transition probability is calculated as

P��xk → xk+1�

= T


��t
exp
−

�

4��t
���xk+1 − xk�

+ �dU�xk�
dxk − ���t + O„��t�3/2

…�2� . �A14�

Based on the estimation

U�xk+1� − U�xk� =
1

2
�dU�xk�

dxk +
dU�xk+1�

dxk+1 ��xk+1 − xk�

+ O„��t�3/2
… , �A15�

it is confirmed that

P��xk → xk+1�
P��xk+1 → xk�

= e−��U�xk+1�−U�xk�−��xk+1−xk��+O„��t�3/2
….

�A16�

Since an initial condition is imposed at t=−�, the
�k+1�-time probability distribution function at time t= tl for
l=0,1 , . . . ,k is expressed as

P��x0, . . . ,xk� = pc�x0��
l=0

k−1

P��xl → xl+1� , �A17�

where pc�x� is the canonical distribution

pc�x� =
1

Z
e−�U�x�. �A18�

The key identity to derive Eq. �A11� is

P��x0, . . . ,xk�
P��xk, . . . ,x0�

= e���xk−x0�+O„�l=0
k ��t�3/2

…, �A19�

which is easily obtained from Eqs. �A17� and �A16�. Since
�l=0

k ��t�3/2→0 in the limit �t→0, k→� for fixed k�t, the
term O(�l=0

k ��t�3/2) in Eq. �A19� can be neglected.
The left-hand side of Eq. �A12� is evaluated as follows.

First, using the key identity Eq. �A19�, we calculate
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	 �
l=0

k

dxlP��x0, . . . ,xk��xk − xk−1�

=	 �
l=0

k

dxlP��xk, . . . ,x0��xk − xk−1�e���xk−x0�

= −	 �
l=0

k

dxlP��x0, . . . ,xk��x1 − x0�e−���xk−x0�

= −	 �
l=0

k

dxlP��x0, . . . ,xk��x1 − x0�

��1 − ���xk − x0�� + O��2� . �A20�

By setting k=1 in this expression, we obtain

	 dx0dx1P��x0,x1��x1 − x0� =
1

2
��	 dx0dx1P0�x0,x1��x1

− x0�2 + O��2� . �A21�

Next, Eq. �A20� can be rewritten as

	 �
l=0

k

dxlP��x0, . . . ,xk��xk − xk−1�

= ��	 �
l=0

k

dxlP0�x0, . . . ,xk��
l�=0

k−1

�x1 − x0��xl�+1 − xl���l

+ O��2� . �A22�

By dividing both sides by �t, Eq. �A12� is obtained.
Detailed balance. It should be noted that Eq. �A19� is

essential to derive the fluctuation-dissipation relation. The
condition in Eq. �A19� implies a time-reversal symmetry ex-
pressed as

P0�x0, . . . ,xN� = P0�xN, . . . ,x0�; �A23�

it is referred to as the detailed-balance condition. In general,
if this condition does not hold for a system without a probe
force ��=0�, the fluctuation-response relation cannot be de-
rived. In fact, for models studied in this paper, this relation
does not hold in nonequilibrium steady states because the
detailed balance is violated.

3. Conventional derivation

When the mathematical rigor is not seriously cared, the
fluctuation-response relation of Eq. �A6� can be quickly de-
rived by employing the path integral representation

T��x�� = K exp
−
�

4�
	

0

� ��ẋ�t� +
dU„x�t�…

dx
− �fp�t��2

dt� ,

�A24�

where T��x�� denotes the probability density of trajectory
x�t�, 0� t��, provided that x�0� is given; K is a normaliza-
tion constant. By denoting the time reversed trajectory of x�t�
by x̃�t�=x��− t�, we obtain

T��x��
T��x̃��

= exp�− �	
0

�

ẋ�dU„x�t�…
dx

− �fp�t��dt� .

�A25�

Using this equation, the following identity is obtained for an
arbitrary quantity A��x��:

�A� =	 D�x�pc„x�0�…T��x��A��x��

=	 D�x�pc„x�0�…T��x��e−���0
�dtẋ�t�fp�t�Ã��x��

= �e−���0
�dtẋ�t�fp�t�Ã� , �A26�

where Ã��x���A��x̃��. By setting A��x��= �ẋ�t��t=�, we obtain
the equality C�t�=TR�t� for t�0. This corresponds to Eq.
�A6� for N=1.

4. Multicomponent case

By introducing discretized variables xk= �xi
k���xi�k�t��,

0� i�N−1, the proof described in Appendixes A 1 and A 2
can be generalized to the multicomponent case. When only
the jth probe force is applied from t=0 �f j

p�t�=1 for t�0 and
f j

p�t�=0 for t�0�, Eq. �A19� becomes

P�,j�x0, . . . ,xk�
P�,j�xk, . . . ,x0�

= e���xj
k−xj

0�+O„�l=0
k ��t�3/2

… , �A27�

where P�,j�x0 , . . . ,xk� is the joint probability distribution in
the presence of the above mentioned probe force. Then, the
following identity is obtained

	 �
l=0

k

dxlP�,j�x0, . . . ,xk��xi
k − xi

k−1�

= ��	 �
l=0

k

dxlP0�x0, . . . ,xk��
l=0

k−1

�xi
1 − xi

0��xj
l+1 − xj

l��l

+ O��2� . �A28�

By defining

Cij
k = � xi

k+1 − xi
k

�t

xj
1 − xj

0

�t
�

0
, �A29�

and

� xi
k − xi

k−1

�t
�

�,j

tr

= ��
l=0

k−1

�tRij
l , �A30�

Eq. �A28� leads to

Cji
k = TRij

k �k �A31�

for k�0. Since Cij
k =Cji

−k, this relation is written as

Cij
k = T�Rij

k + Rji
−k� �A32�

for all k. By taking the limit �t→0, we obtain Eq. �A6�.
A matrix representation can be used in the multicompo-

nent case. Let C�t� and R�t� be the matrices whose �i , j�
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components are Cij�t� and Rij�t�, respectively. Using these
matrices, Eq. �A6� is expressed as

C�t� = T�R�t� + R†�− t�� , �A33�

where the symbol † represents the transpose of the matrix.
From this equation, the following relations are derived with
regard to the symmetric and antisymmetric parts of the ma-
trices:

Cs�t� = T�Rs�t� + Rs�− t�� , �A34�

Ca�t� = T�Ra�t� − Ra�− t�� , �A35�

where the symbols s and a denote the symmetric and anti-
symmetric parts, respectively.

APPENDIX B: QUICK DERIVATION OF THE EQUALITY

Based on the path-integral argument presented in Appen-
dix A 3, we can simplify the derivation of Eq. �5�. In this
appendix, we do not consider the mathematical rigor, al-
though the following argument can be made more precise by
employing the discretization argument, as shown in Appen-
dix A 1. For simplicity, we consider the case with a single
degree of freedom without the inertia term. The generaliza-
tion of the argument to multivariable and underdamped cases
is straightforward.

We analyze the Langevin equation

�ẋ�t� = F„x�t�… + ��t� + �fp�t� , �B1�

where ��t� denotes the zero-mean white Gaussian noise that
satisfies

���t���t��� = 2�T�t − t�� . �B2�

The probability of a trajectory �x�= �x�t��, t0� t� t1 for x
=x0 at t= t0 is expressed as

D�x�P�x0��x��

= D���K exp
−
�

4�
	

t0

t1

��ẋ�t� − F„x�t�… − �fp�t��2dt� ,

�B3�

where K is a normalization constant. By using this probabil-
ity, we obtain

�ẋ�t��� =	 D�x�P�x0��x��ẋ�t� , �B4�

for t0� t� t1. From Eq. �B4�

�ẋ�t���

��fp�s��
=

�

2�
�ẋ�t� � ��ẋ�s� − F„x�s�…���. �B5�

Based on the definition of the response function, the left-
hand side of Eq. �B5� is identified as R�t−s� in the limit �
→0. Therefore, in this limit,

R�t − s� =
�

2
�v̄2 + C�t − s�� −

�

2�
�ẋ�t� � F„x�s�…�0. �B6�

By exchanging t and s in Eq. �B6� and adding the resulting
expression to Eq. �B6�, we obtain

R�t − s� + R�s − t� = ��v̄2 + C�t − s�� −
�

2�
�ẋ�t� � F„x�s�…

+ ẋ�s� � F„x�t�…�0. �B7�

Since the last term on the right-hand side of Eq. �B7� be-
comes �J�0 when t=s, Eq. �5� is obtained.

APPENDIX C: DERIVATION OF LEMMA

For an arbitrary nonanticipating function A�t� �3�, the fol-
lowing relation holds.

�1� When t� tN,

��	
t0

tN

A�tN − s� · dW�s�� � dW�t��
0

= �A�tN − t��0dt .

�C1�

�2� When t= tN,

��	
t0

tN

A�tN − s� · dW�s�� � dW�t��
0

=
1

2
�A�0 + ��0dt .

�C2�

�3� When t� tN,

��	
t0

tN

A�tN − s� · dW�s�� � dW�t��
0

= 0. �C3�

Proof

We discretize the time interval �t0 , tN� as t0� t1� t2� ¯

� tN−1� tN. In the following, the symbol � is used to imply
equality in the limit of N→�. Further, we use the notation,
�Wk�W�tk+1�−W�tk�.

�1� When t� tN, tk can be considered such that t= tk. By
discretizing the left-hand side of Eq. �C1�, we obtain

��	
t0

tN

A�tN − s� · dW�s�� � dW�t��
=��	

t0

tk

A�tN − s�

· dW�s� + 	
tk

tN

A�tN − s� · dW�s�� � dW�tk��
0

�� 1

2�	t0

tk+1

A�tN − s� · dW�s�

+ 	
t0

tk

A�tN − s� · dW�s���Wk�
0

+� 1

2�	tk+1

tN

A�tN − s� · dW�s�

+ 	
tk

tN

A�tN − s� · dW�s���Wk�
0
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�� 1

2��
l=0

k

A�tN − tl��Wl + �
l=0

k−1

A�tN − tl��Wl��Wk�
0

+� 1

2� �
l=k+1

N−1

A�tN − tl��Wl

+ �
l=k

N−1

A�tN − tl��Wl��Wk�
0

. �C4�

Since A�t� is a nonanticipating function and that �Wk is in-
dependent of �Wl when k� l, Eq. �C4� can be written as

��	
t0

tN

A�tN − s� · dW�s�� � dW�t��
0

� � 1
2A�tN − tk��Wk�Wk + 1

2A�tN − tk��Wk�Wk�0

= �A�tN − tk��0���Wk�2�0

= �A�tN − tk��0�tk+1 − tj� . �C5�

By considering the limit N→�, we obtain Eq. �C1�.
�2� For t= tN, we define tN+1 such that dW�tN��W�tN+1�

−W�tN�. By discretizing the left-hand side of Eq. �C2�, we
obtain

��	
t0

tN

A�tN − s� · dW�s�� � dW�t��
� � 1

2�	t0

tN+1

A�tN+1 − s� · dW�s�

+ 	
t0

tN

A�tN − s� · dW�s���WN�
0

�� 1

2��
k=0

N

A�tN+1 − tk��Wk

+ �
k=0

N−1

A�tN − tk��Wk��WN�
0

. �C6�

Since A�t� is a nonanticipating function and that �Wk is in-
dependent of �Wl when k� l, Eq. �C4� can be written as

��	
t0

tN

A�tN − s� · dW�s�� � dW�t��
0

�
1

2
�A�tN+1 − tN��0���WN�2�0

=
1

2
�A�tN+1 − tN��0�tN+1 − tN� . �C7�

By considering the limit N→�, we obtain Eq. �C2�.
�3� For t� tN, dW�t� is independent of dW�s� for s� tN

� t; hence, Eq. �C3� is obtained immediately.
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